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SUMMATION BY PARTS, PROJECTIONS, AND STABILITY. II 

PELLE OLSSON 

ABSTRACT. In this paper we prove strict stability of high-order finite difference 
approximations of parabolic and symmetric hyperbolic systems of partial dif- 
ferential equations on bounded, curvilinear domains in two space dimensions. 
The boundary need not be smooth. We also show how to derive strict stability 
estimates for inhomogeneous boundary conditions. 

1. STRICT STABILITY IN SEVERAL SPACE DIMENSIONS 

In [2] we proved stability for high-order finite difference approximations of 
hyperbolic and parabolic systems using certain projections and difference oper- 
ators satisfying a summation-by-parts rule. In one space dimension we showed 
how to obtain strict stability. The aim of this paper is to prove strict stability 
in several space dimensions. Furthermore, it will also be demonstrated how to 
handle inhomogeneous boundary conditions. We limit ourselves to two space 
dimensions for convenience. 

The purpose of strict stability is to ensure the same growth rate of the dis- 
crete and analytic solutions. If the analytic problem is defined on a curvilinear 
domain Q with boundary F (cf. Fig. 1 on next page), then there must exist a 
diffeomorphism 4 = ((x) of Q onto the unit square (0, 1) x (0, 1) in order 
for the finite difference method to be well defined. Consequently, a constant- 
coefficient problem in the original domain may be transformed to a variable- 
coefficient problem on the unit square, which may account for a nonphysical 
growth in the discrete estimate. 

Let 4 = 4(x) be a diffeomorphism of Q onto I = (0, 1) x (0, 1). The 
following identities are readily established: 

aXI j-1 0K2 aX2 _j_1 _2 

Oa~ O x2 O ~ I Ox, ( 
( 1.1 ) Ax2 ' 04l J = det -x 

ax, _J_1 Oi aOX2 _J- I Ax 

O 2 aX2' O 2 aOx1 

which in turn implies 

2 

(1.2) E (J-0i) = 0, 
i=l 
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1[3 

2 

FIGURE 1. Domain Q with boundary r = UI= Fr 

where a denotes the two-dimensional gradient operator. We require that 4(x) 
be uniformly nonsingular, i. e., there exists a constant 5 > 0 such that J1 > a 
on Q. For later use we record the normal and tangential derivatives u,i and 
uT, at the boundaries corresponding to Xi = 0, i = 1, 2: 

UTj = (-Y) UOI/IXjl| 
(1.3) i,j=1,2, j$&i, 

Uni = -( Oi * aciuXi + aOj * NjU01/iX1 , 

where the boundary r of the domain Q has been parameterized in the positive 
direction. 

The analytic scalar product obeys 

(u, v) = J uT(X)V(x)dx= fuT(X(g))V(x(E))J-1d'd 

which suggests the following semidiscrete scalar product: 

(1.4) (u, v)*-(u, Jv)h = (J'1U, V)h 

where 
v 

(u, v)h -hlh21E ciaruJvij huTv, h1 = A1, h2 = AX2 
i,j=O 

We have assumed the same number of grid points in both coordinate directions 
for convenience. The coefficients aj have been determined such that the dif- 
ference operators Di approximating O/9aO, i = 1, 2, satisfy a summation-by- 
parts rule. Notational conventions for D and the definition of the summation- 
by-parts rule can be found in [2]; uT = (uT ... uT), uT= (uTj ... ) 

uij E Rd; the matrix representation of J-1 is 

(1.5) 

j J I. ) ,(J( )IR 

where 
= J-(ihi, jh2) = det (9 x(ihi, ]h2)). 
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Similarly, 

(1.6) 
o(Xo )(oI 

Thus, each grid point in (1.4) is scaled with the cell volume. 
The analytic boundary integrals can be parameterized as 

I 
uT(x)v(x)ds= j uT(x(4i, O))v(x(Gl, O))lxl(4, O)Id~i. 

Hence, it is natural to define the boundary scalar product as 

(1.7) 
V V 

(u, V)r 
j 

a1 (SojuTvoj + SVjUTVvj) + E a, (si1UTo Vo + SiVuzViv) 
j=O i=O 

where the arc lengths are defined as 

so; = Ix42(O, ih2)1h2 , sio = Ix1, (ihi, O) , h 

with similar definitions for svj and siv . 
It was shown in [2, ?2. 2] that the projection P representing the analytic 

boundary conditions can be written as 

(1.8) P = I - YlL(LT -lL)-lLT, 

where L is the discretization of the analytic boundary operator. It follows that 
(u, Pv)h = (Pu, V)h . It suffices to consider solutions that are supported only 
in a neighborhood of (xI (0, 0), X2(0, 0)); P is assumed to be independent of 
t. In two space dimensions the general form of L is 

(1.9) L = (LIo *-- Llr L20 ... L2r) c- R(v+1)dx2(r+1)d 

where LIj and L2i denote the boundary operators at x(O, jh2) and x(ihI, 0); 
r is a constant depending on the approximation order of the boundary condi- 
tions (typically the number of grid points along a coordinate line involved in 
the approximation of the normal derivative). However, r does not depend on 
the mesh sizes h1, h2. Furthermore, 

r 2 

1T T0Zde ~ dx'(v+ 1ld Lj= ? ... 0 0 ... o) E rMkk 
k=0 

LT= (NioeT ... NireT 0 ... 0) E Rdx(V+1)2d 

Here, e- = (0 ... 0 I 0 ... 0) E Rdx(+l)d Mik, Nik ERdxd 
In order to prove stability, we must have Pv = v. Since v will be the 

solution of equations like (1.13), it follows that PJ-lv = J-lv. Therefore, it 
is natural to require 

(1.10) pJi- = J-1p. 
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For a general P this identity expresses a compatibility condition between the 
analytic boundary conditions and the mapping 4(x). Let P be given by (1.8) 
and (1.9). Then (1.10) certainly holds if 

(111 Jj J(x(ih, , jh2)) = Jio i i=O, ..., v, j= O, ... , r, 
* Jij _J(x(ih , jh2)) = Joj, i =O, ..., r, j =O, ... , v , 

which states that the mapping 4(x) is locally isochoric, i. e., volume preserving, 
in the x~,-direction at the boundary, where 0 /ai is the nontangential deriva- 
tive. In case of characteristic boundary conditions and Dirichlet conditions we 
have r = 0, and ( 1.1 1 ) is trivially satisfied. For general boundary conditions, 
however, (1.1 1) couples the boundary operator to the grid transformation. 

1.1. Symmetric hyperbolic systems. Using (1.2), we recast 

2 

Ut= Z Aiux,+F, xeQ, AT=Ai, 
i=l1 

into a form that eliminates the need for the commutator in the semidiscrete 
case 

(1.12) 

(Ju u 2E (J-Biu) + J -'Bi u~, - 1 J -div(A)u +J-F, 

where 

Bi = a *j A = Al + XA2, div(A) = a A= + O1 XI O9x2 O9x1 Ox2 

Define the characteristic variables as (o(x, t) = QT(x)u(x, t) , x E F, where 
Q are the orthogonal eigenvectors (assumed to be time-independent) of B-- 
nIAI + n2A2; n is the outward unit normal at IF. At each boundary point xij it 
is assumed that the eigenvalues of B (xij) satisfy IA(xij)I > ? yj; the significance 
of this assumption is explained in [2, ??3. 1, 4. 1]. The characteristic boundary 
conditions can then be expressed as 

(qi(x, t) = S(x)qI(x, t), 

where S(x) is assumed to be "small"; ?oi(x, t), ?o11(x, t) denote the in- and 
outgoing characteristic variables. In the original variables we thus have 

L(x)u(x, t) (Qf(x)-S(X)QTf(X))U(X, t) = 0, x E F. 

The smallness assumption on S(x) implies that L(x) has full rank. At the 
corner xoo x(O, 0) we require that the characteristic boundary conditions 
be satisfied for V(x.o, t) - QT(Xoo)u(xoo, t), i = 1, 2, where Qi are the 
eigenvectors of B(xoo), n - n(i) = -aOi/ljaij being the two normals at the 
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corner. This means that two sets of boundary conditions 

Llu (Qr1_SQTr1)U = 0, L2U-(QfTI-SQf1) =0, 

are prescribed. At the corner the resulting boundary operator may thus be 
written as 

L(xoo) = (LI (xoo)) 

It will be assumed that L(xoo) has full rank, which occurs for the Euler equa- 
tions at solid corners, where it is natural to require that both normal components 
of the velocity field be zero. This assumption simplifies the computations that 
follow. Furthermore, a rank-deficient operator L(xoo) implies that there are re- 
dundant boundary conditions embedded in LI (xoo) and L2(Xoo)). In that case 
the redundancies should be eliminated before forming L(xoo) from L1(xoo) 
and L2(Xoo). 

For the semidiscrete case the boundary operator is defined by 

(LTv)ij = L(xij)vij, i =0, v, j = 1,..., v -1, and 
j=0,v, i=,... ,v , 

where L now has full rank. For details on the explicit structure of L we refer 
to [2, ? 4. 1]. The projection operator P is then defined by (1.8). 

Equation (1.12) is discretized as 

(1.13) 

(-lv) = ( 
(2 (DiJ-Biv + J-1BDv) - 1J-1Cv + J-1F) 

with 
/div (A ) (x (O, O),~ t) 

K div(A)(x(1, 1 ), t)) 
the Bi's are defined analogously. 

Proposition 1.1. The approximation (1. 13) is strictly stable.. 

Proof. The energy method yields (using PJ-1v = - 1v, PJ-1 J-1 =p 

Pv = v) 

d 2 

dt(v, V)h = Z ((v, DiJ1 Biv)h + (v, J1BiDiv)h) 

-(v, J l CV)h + 2(v, J 1F)h,. 

But (using B1(O, jh2) instead of BI(x(O, jh2), t) and so forth to make the 
notation less cumbersome) 

v 

(v, D J-lBiv)h =-h2 E ajVTjJ1 (0, jh2)BI (O, 1h2)vo - (DI v, J- lBv)h 
j=O 
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Since diagonal scalar products are used, it follows that ( BT = B1) 

(Dlv, J1Blv)h = (BIJ-1DIv, V)h = (J-1BIDIv, V)h, 

where the last equality follows since B1 and J-1 commute. Thus, 
v 

(v, DlJ1-Blv)h =-h2 ajvTjJ-1(0, jh2)BI(O, jh2)vO - (J-1B1DIv, V) 
j=0 

with a similar relation for (v, D2J-1B2v)h . We thus arrive at 

d v 

dt(v, V)h < -h2 EajvTjJ1(0, jh2)BI (O, jh2)Vo0 
dt 

j~~~~=0 
o 

-hZ aiv lTJ- (ih1, O)B2(ihi, O)viO 
i=O 

+(Idiv(A)I. + 1)(v, V)h + (F, F)h 

By means of (1.1) it follows that 

J-1B X = K2 A - OX1 
A2 

Evidently, x,2 is a tangent vector of the curve x(O, 42) . Hence, 

(9 X2 (9XIA 

9 02 9 2) 

is an outward normal to x(O, 42) E F. The unit normal is then defined as 

(ni n2) = " /IX421 

Using the definition of the arc length, we then obtain 
v 

v 

-h2 j a1vjJ' (0 1h2)BI (O, jh2)vo1 = S a1sojvjT (nIAI + n2A2) VO1. 
j=0 j=0 

But Pv = v implies that the analytic boundary conditions are satisfied, whence 

v T 
(n A I + n2A2) VOj < -yjlvojl2. 

Letting y _ inf(yj) > 0 implies 
v v 

-h2ZajvjJ' jh2)BI(O, jh2)vO < -y ajsoIVoj 12. 
j=0 j=0 

We have thus established 
d 

.-(V, V)h + y(v, V)r < (Idiv(A)K. + 1)(v, V)h + (F, F)h. 
This is exactly the same estimate that one would get in the analytic case, and 
the proposition has been proved. o 
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1.2. The heat equation. In curvilinear coordinates the heat equation ut = u, 
+UX2X2x x e Q, can be expressed as 

(1.14) ( l 
)t iE 

J 
(9 Xi (j= a X U k 

At the boundary the normal derivative is set to zero, i. e., un (x, t) = 0, x E rF. 
Define 

Kaj (xO, O)) 

< ~~~~a0j (xl, 1)) 

and 
2 

Di= E MijDj. 
j=1 

Clearly, Di is a consistent approximation of 0/a xi. Define LTv _ (Dlv)01, 
j = O, ..., r, L Tv (D2v)o, i = O,..., r, i. e., 

dr LT =(? ... k 0 ... o ), ERlX(v+l), i - , ...,r, 

LT= d= -I04IooL o - T O.2)..L 

(i .i ... ei2o= -E R2Io=L2 - (O ... r2)OL, 

_)i2 h2~~~~~~~~~O2 o 

are consistent approximations of the outward normals at the origin. At the 
remaining grid points of F4 and F1 we set 

Ln =-IOIo1Li, j = 1, ...n,r, L == 1, ..., r. 

Wae ne that for orthogonal grids these operators are discrete outward normal 
difference operators. 

The boundary projection P is defined by (1.8), where 

L = (Ln1o ... Lnlr Ln21 ... Ln2r ) 

It should be noted that P may no longer be unconditionally well defined since 
L may be rank-deficient. Elementary computations show that 

r r 

E ZjLnIj + fliLn2i = 0 
j=O i=l 
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implies 

1(g84 12h2 + (NI - O2)ooh1) ao = 0. 

If (WI, *N2)Oo < 0, i. e., at acute corners, there is a possibility of a nonzero 
ao if 

(1.16) h2 =hi1 
ja~iI 12 

Hence, at acute corners we assume h1 and h2 to be such that (1.16) does not 
hold. Furthermore, 

L = (Lnlo Ln,l ... Lnir Ln20 Ln2l ... Ln2r) 

is rank-deficient. This is obvious if OI * N2 = +?jK1 IIjK2I, because then 
Ln,O = ?Ln2O. Otherwise, we note that 

r r 

E ZjLnlj + E fliLn2i = 0 
j=0 i=O 

is equivalent to 
r r 

Za'-Lij + E ZflL2 = 0, 
j=0 i=1 

where the latter equation has the nontrivial solution a' = doj, fli = -(h2lhl)do 
[2, Lemma 4. 1]. Here, 

axj = ja9j llojazj, j= ,.. r , ,Si = IN421i0fli ,i= r , 

and 
/~ ~ ~ W -a N 81*2)OO' 

WI 
a oo 

I2I fib - 

) ? 

6 which has a unique solution if and only if IN * a. 2 1l00 < 1IO1 1001 2 1I00* This 
shows that 

Ln2o E span [Ln,o ... Ln,r Ln21 ... Ln2r ]-span [LI - 

The semidiscrete heat equation is now defined as 

22 

(1.17) (J-lv ) P E Dk (J1M ( 2 MjD)j) 
i,k=1 = 

Proposition 1.2. Assume that the mapping 4(Q) = I is locally isochoric at the 
boundary in the sense of (1.1 1), and that the grid is orthogonal at the boundaries 
except at the corners. Then (1.17) is strictly stable. 
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Proof. Since the transformation is locally isochoric at the boundary, we get 
Pv = v. Thus, the energy method implies 

d 2 

dt (v, v)h= 2 E (v, DkJ MikDiv)h. 
i,k=1 

Summation by parts yields (v is assumed to have compact support) 

d 2 v 

-t-(V, V)h = -2Eh2 E alvol(JlMi1DAV)OI 
i=l 1=0 

2 v 2 

-2 E hl E avo0(J-P'Mi2DAV)10 -2 E (MikDkv, J-1lv)iV. 
i=l 1=0 i,k=l 

Obviously, 
2 2 

Z (MikDkv, J 11Div)h = Z(b)v, D hV)h. 
i,k=l i=l 

Next we turn our attention to the boundary terms. We have 

2J1M Dv) = Joj lOl 0l (| l o(Dlv) o + ( K0'l ,9'2)01 (D2V )ol) 

The parenthetical expression is recognized as a discretization of the normal 
derivative (cf. (1.3)). The other boundary is treated analogously. At 4l = 0 we 
thus define a "normal difference" operator Dn1 through 

(ni V )01 -(1Ioi(D1v)01 + (OIK I2)01 (D V )o)01 

with a similar definition of Dn2 at 42 = 0. From (1.1) it follows that Jo7 1O I4 = 

Ixq21I. Hence, 

d 2 

--(v, V)h = 2(v, -nv)- 2 (Div, bLV)h. dt 

Using v = Pv and the orthogonality assumptions, we conclude that 

(Dn1) = -Ia1IoiLTV = Ln1V = 0 1>0 

(Dfn2V)10 = -oI21ioL9Tv = v L O, 

At the origin we have 
(Dn1v)0o = LT v =0, 

(Dn2V)00 = v2 =O 

where L7T v vanishes because of the construction of P; LT0 v disappears 
since we have shown that Ln2o belongs to the column space of L. Hence the 
boundary sum is identically zero, which proves the proposition. E 

Remark. It would still be possible to prove strict stability, even if the grid were 
not orthogonal at the boundary. To compensate for the loss of orthogonality, it 
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is necessary to require that the grid be globally isochoric in a neighborhood of 
the boundary F. 

1.3. General parabolic systems. When considering parabolic equations in gen- 
eral, tangential derivatives may appear in the boundary integrals, potentially 
calling for integration by parts once more. The occurrence of tangential deriva- 
tives depends on the coefficients of the original equation, the geometry, and the 
presence of mixed derivatives. These criteria are not independent of one an- 
other. The following simple example will illustrate this interdependence. Con- 
sider the parabolic model equation 

(1.18) Ut = UX1X1 + UxiX2 + UX2X2 X E 

where Q is diffeomorphic to the unit square; the boundary conditions are yet to 
be specified. The energy method gives (the cross term is integrated with respect 
to xI) 

d1IU12 =2j(uun+nIuux2)ds-2(uxux2 + ux )dx 

The normal and tangential derivatives are defined as 

a _ a a a a a 
a 

- 
nl, +n2a S ,9 = n,a -+T1aj 

oa a a a a a 
a - Tj1x + T2OX ' = f2- + T28T 

where n is the outward unit normal as usual; the unit tangential T is chosen 
corresponding to a positive orientation of F. Thus, 

T1 = -n2, 
T2 = nl 

If, on the other hand, the cross term is integrated with respect to x2, we obtain 

= 2j(uun + n2uux1)ds - 2 (ux1ux1 + ux'uX2 + uX2uX2)dx. 

We must show that 

(1.20) jniUUX2ds =jn2uux1ds 

in order for the energy method to be well defined. Using the definitions above 
gives 

jn,uux2ds = j(nlln2UUn + nIT2uuT)ds, 

Jn2uuxids = j(nin2uu, + n2TIuu)ds. 

Clearly, (1.20) will follow if and only if 

Jni T2uuTds = jn2TIuuTds. 
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From (1.19) and n2 + n2 = 1 it follows immediately that 

JnllT2UUTds = j n2TmuuTds - juuTds. 

Note that the second integral of the right-hand side would vanish identically 
if F were smooth. To simplify the analysis, it will, as usual, be assumed that 
u is supported only in a neighborhood of the lower left corner. Hence, it will 
be sufficient to consider the boundary portions F1 and 1`4 corresponding to 
42= 0 and 4I = 0. Parameterizing F in the positive direction gives (cf. (1.3)) 

juU,ds = 2 j -(u2),2d42 + 2 j(u2)X,dil . 

Letting 42 - -42 in the first integral of the right member gives (O/OI2 
-ala42 , d42 -- d42) 

| UUrds = 2 
t(u2)0d-2 

+ 
(u2),1dXl 

= 0, 

and (1.20) follows. The energy method is thus well defined, and we have 

dt1111 < 2j((I + nln2)uun + n"uuT)ds - + IIux2 12) 

The quantity n2 is discontinuous at the corners. Define the jump discontinuity 

[n 2](x) = nl2R(x) - nl2L(X), 

where nlIR(x) and flL(x) are the left and right limits of n, at x (according 
to the positive orientation of F). Straightforward computations show that 

J n2uuTds = 2 [n2](Xci)U2(Xci, t) - J(n2 )T U2ds 

where xci, i = 1, ..., 4, are the corner points. Thus, 

dtllul2 < ([n2](Xci)U2 + 2(1 + n1n2)uu, - (n 2)Tu2) ds 

(IIuxl |2 + IIUx2112) 

From this inequality it is obvious that giving Dirichlet data at the corners and 
Neumann data at the remaining boundaries would yield an energy estimate. 
In fact, we could even allow inhomogeneous Dirichlet data at the corners and 
still obtain an energy estimate in terms of the data. The effect of the corners 
disappears if and only if [n 2](x) = 0, which happens if and only if 

(i) nlL(X) = nlR(X) 

(ii) nlL(X) = -nlR(X) 

The first case implies that the normal is continuous, i. e., x is not a corner point. 
The second case is more interesting, since the normal is discontinuous, but the 
effect on the energy estimate disappears. This illustrates how the geometry can 
interact with the cross terms. The simplest example is obtained by solving 
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(1.18) on Q being the square with (1, 0), (0, 1), (-1, 0), and (O, -1) as 
vertices. Evidently, the second case holds at the corners, and no corner values 
should appear in the energy estimate. This can also be seen by a change of 
coordinates: 

1 1 
1 --=--XI'+ -X2. 

X/2 =2/ 

Equation (1.18) is then transformed into 

Ut = 2UU1X, + U2 e (--, -) x (-- -) 

The cross term has vanished; instead the equation has become anisotropic. In 
this coordinate system it is apparent that no tangential derivatives - and con- 
sequently no point values - will appear when deriving the energy estimate. 

To solve ( 1. 18) by means of finite difference methods, it is rewritten in self- 
adjoint form: 

(1.21) 
2 2 

(J-lu) = E (J-I (I + n ()nk)) 0'k *u) + (-1)n (n(k)n(k)u,) 
k=1 k#I1 

where n(k) = -jk.k1 This equation is discretized in space the usual way. 
The cross terms 

(- n(k) n(k) uX ) 

must be integrated twice to eliminate the tangential derivatives. In the semi- 
discrete case this amounts to performing summation by parts twice, the second 
of which will require the introduction of a commutator, thereby obliterating 
strict stability (except for the second-order accurate difference operator). To 
restore strict stability, it would be tempting to reformulate the critical terms in 
skew-symmetric form: 

(k) n(k) = (n (k) nf(k) + 1 (k) n(k) -2 (n(k)n(k)) u( . 

Doing so, however, would introduce lower-order energy terms (, *)h, whose 
presence would destroy strict stability. The simplest way to resolve this am- 
biguity is to assume homogeneous Dirichlet data, in which case the boundary 
terms vanish identically, and (1.21) would be the preferred choice. The choice 
of homogeneous Dirichlet data to eliminate the influence of the mixed deriva- 
tives arises naturally when solving the Navier-Stokes equations, since at solid 
boundaries we have zero velocity, and since the cross terms involve only the 
velocity components. 
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We now turn to general parabolic systems subject to homogeneous Dirichlet 
conditions, 

2 

Ut= ,Aiiux1xj+F, XEQ, 
i,j=l 

u(x, 0) =f(x), 
u(x,t)=0, xef. 

This equation can be rewritten in curvilinear coordinates as 

(1.22) 
2 

i1ak2 

)tl i,= ( AiijuXj - ,J 1div(Aj)ux, + J-1F x E Q2 

u(x, 0) =f(x), 
u(x, t) =0, xef, 

where div(Aj) = (Alj)x1 + (A2j)X2. Define Cj _ div(Aj). The semidiscrete 
system is then given by 

(1.23) 
2 2 

(J-1v)t = P E DkJ 1MikAiDIV-E J-CjDjV + J-1F 
iE,j,k=i j=1 

The projection operator P represents the homogeneous Dirichlet conditions. 

Proposition 1.3. The approximation (1.23) is strictly stable. 
Proof. Left to the reader. o 

2. INHOMOGENEOUS BOUNDARY CONDITIONS 

The principle for handling inhomogeneous boundary data is best illustrated 
by means of a simple example. Consider the one-dimensional advection equa- 
tion 

ut + UX=? 0 xe(0,01) 

(2.1) u(x, 0) =f(x), 
u(0, t) =g(t). 

The corresponding semidiscrete system reads 

vt + PDv (I-P)t, P 1 ' (1 

where gj, j = 1, ... , v, are to be determined later. Obviously, vo(t) = g(t) if 
fo = g(0) . The boundary condition is thus fulfilled at all time. More generally, 
multiplying equation (2.2) by P (using p2 = P) and subtracting the resulting 
equation from (2.2), we can see that v = Pv + (I - P)g (I - P)(v - g) = 0 . 
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Hence, the energy method gives 

dtIIvII = -2(v - (I - P)k, Dv)h + 2(v, (I - P)kt)h. 

Subtracting 2(g, Vt)h from both sides, we get 

2(v - k, Vt) = - 2(v - k, Dv)h- 2(k, Vt + PDv - (I - P)kt)h 
+ 2(v -g, (- P)gt)h - 

Using (2.2) and (I - P)(v - k) = 0 shows that 

2(v -g, Vt)h = -2(v - k, Dv)h, 

1. e., 

2(v - k, (v -)t)h = -2(v - k, D(v - )h - 2(v - k, kt + D .)h 

If k solves the auxiliary problem 

g2.3) kt + Dk = 0 
(2.)(O) f 

then 

d 
I-I = -2(v - g, D(v-g))h = (Vo - g)2 _ (vv- g)2 < 0 

since vo = g. Thus, 

I Iv (t) - k(t) I Ih < I Iv (O)- (O) I Ih = 0. 

Consequently, 
v(t) = g(t), t > O. 

If k satisfies (2.3), we get the energy estimate 

d 2 - g2. d II Ih -=-2(k, Dk)h 2g>2v 

Hence, 

IIg(t)II +j gV2(T)dT= I IfII +j g2(T)dT. 

Finally, v = k implies 

IIv(t)1I2 + j v 2(T)dz = IIfIIh + j g2(T)dT, 

which is identical to the continuous estimate. 
It remains to be verified under what circumstances k solves the auxiliary 

problem (2.3). Let 4 = (go g, ... gv)T be the solution to (2.3). Hence, 

DJk(O) = DJf, j = O,1, ..., 

and 

g + (-l)j+'Dik = O, t > 0, j =0, 1, ... 
at'7 
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i. e., for t = 0 we get the compatibility conditions 

ti (0) + (-)i+1DJf = 0, j = O, 1,. 

Thus, if we require that the initial-boundary data f and g satisfy 

ati() + (-I)J(DJf) =O , j = O, 1,... 

it follows that 

g (0) =g(0) j=O, 1. 

By virtue of being the solution to (2.3), go(t) is analytic in t. Hence, if the 
boundary data g(t) is taken to be analytic, these equalities imply that g(t) = 
go(t), t > 0, i.e., 4 = 4, which proves that 4 indeed solves (2.3). 

In what follows we shall analyze the general case. Consider the ODE system 

(2.4) (J-Iv)t -PR(t,v)+(I-P)(J- 1 )t 

with J'-I being the inverse Jacobian, and where 

R(t, v) = G(t, v) + J-F(t), G(t, O) = O. 

This form arises naturally when discretizing a nonlinear PDE in space; 4 rep- 
resents the boundary data, and F is the forcing function; G(t, v) is the dis- 
cretization of the differential operator. It should be pointed out that most op- 
erators G occurring in practice are autonomous, i. e., G = G(v). We use 
the tilde notation to emphasize that 4 is only partially determined, that is, 
some components are determined by the boundary data of the underlying PDE; 
the remaining components are unknown. It is no restriction to assume that 
4 = (go ... g, )T with g1, i = 0, ..., s, being the known components; s 
is of course independent of the meshsize. Otherwise, 4 could be brought to 
this form by permuting the dependent variables appropriately. As usual, we 
require that P and J-I commute, which is true if the grid is locally isochoric 
at the boundary. Next, we define the auxiliary problem 

2.5) (J-1w)t = R(t, w), (2*5) w(O)= 

Any solution to (2.5) will satisfy 

dti (J-lw) Ri(t. w), j = O 1, ..., 

where Rj is defined recursively by 

Rj(t. w) = aR-(t,w + awil t w)JR(t,w) , j =1, 2, ... 

Ro(t, w) = J-1w. 

Consequently, at t = 0 we have 

di 
(J-lw (0)=Rj(0f). j=0?15.-- 
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Assumption 2.1. The boundary data gi(t), i = 0, ..., s, the initial data f, 
and the forcing function F satisfy the compatibility conditions 

di (J -4 (?) = (Rj(of))., i=O,...,s, j=O, 1 

If R is sufficiently well behaved, in particular if G is linear and autonomous, 
then w (t) will be analytic for 0 < t < T. Thus, if we require that the boundary 
data gi(t), i = 0, ..., s, be analytic, it follows that 

gj(t) = w1(t), i = O, ... , S. 

Furthermore, the unknown components gi, i > s, are of course taken to be 

gi(t) = wi(t), i> s. 

Hence, 4 = w solves (2.5). 

Remark. It suffices to consider gi piecewise analytic, since the process can be 
repeated at t = t1 , where t1 is the critical time when analyticity is lost. 

Proposition 2.1. Let v be the solution to (2.4) and suppose that Assumption 2.1 
holds. If the boundary data gi(t), i = 0, ..., s, are piecewise analytic in t, 
then 

(v -4, (v - )t)h = (v -4, G(t, v) - G(t, g))h 

Proof. Using (2.4) and Pv = v - (I - P)g, which is true since P and J- 
commute, we readily conclude that 

(v, Vt)h = (v -4, R(t, V))h + (4, PR(t, V))h + (V, (I -P)(J g)t) 

Hence, 

(v - , vt) = (v -4, R(t, V))h + (, -(J'lv)t + PR(t, V))h 

+(V, (I - P)(J 14)t)h 

or, using (2.4), 

(v - , Vt)h = (v - 4, R(t, V))h + (V - 4, (I - P)(J-14)t)h. 

But 

(v -4, (I - P)(J lg)t)h = ((I - P)(v - 4), (J 14)t)h = 0, 

and so 
(v -4, Vt)h = (v -4, R(t, V))h 

which in turn is equivalent to 

(v -4, (v - g)t)h = (v -4, R(t, v) -R(t, 4))h - (V -, (J 1')t -R(t, g))h. 

The assumptions on 4 imply that (J-14)t = R(t, 4), which proves the propo- 
sition. a 
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2.1. One-dimensional parabolic systems. We consider the parabolic system 
(lower-order terms are omitted for convenience) 

Ut = (Aux)x + F 
(2.6) u(x, 0) = f, 

Lou(O, t) + LIux(O, t) = g(t) I 

where 

L (Lo) LI= ('J), g(t)- (gI(t)) 

and u E Rd, rank(LI) = d1, rank(LII) = d2, d1 + d2 = d. Equation (2.6) is 
assumed to be strongly parabolic, i. e., there exists a constant 3 > 0 such that 
uTA(x, t)u > 231u12 . Furthermore, A(x, t) is assumed to satisfy the following 
compatibility condition [1, Lemma 7. 2. 1, p. 215]: For a, b e Rd satisfying 
LOia = 0, LIb = 0, one has aTA(O, t)b = 0. The boundary data g(t) is 
assumed to be piecewise analytic in t. 

Let the boundary projection P be given by (1.8); the discretized analytic 
boundary conditions are defined by LTV = Lovo + LI (Dv)o = g(t) . The hy- 
potheses for Lo, LI and the compatibility condition on A imply that L has 
full rank if the mesh size h is small enough [2, ?3. 2]. Hence, there exists a vec- 
tor g(t) E R(v+l)d such that g(t) = LTk(t), i. e., LTv = g #== LT(V - g) = 0. 
The semidiscrete approximation of (2.6) can then be formulated as 

vt = P (DADv + F) + (I-P)gt, 
(2.7) v(O) =f. 

Assuming that initial data satisfy LTf = g, we have that (multiply (2.7) by 
P and subtract the result from (2.7)) (I - P)(v - g) = 0 or, equivalently, 
LTV = LTg. Thus, 

Lovo + LI (Dv)o = g 
which shows that the analytic boundary conditions are satisfied to some order 
of accuracy. 

Proposition 2.2. If in addition to the previous hypotheses, Assumption 2.1 holds, 
then (2.7) is strictly stable. 
Proof. We know that g solves the auxiliary problem 

4t = G(t, )+ F(t), 
(0)= f, 

where G(t, g) = DADg. Proposition 2.1 then yields (using J = I) 

(v-g4, (v-g)t)h = (v -g4, DAD(v- 

< -(vo - go)TA(D(v - 4))o - 261jD(v -)112. 

Since LT(V - 4) = 0, it follows that 

Lo'(Vo - go) = 0. 

Furthermore, decompose vj - gj = (vj - gj) + (v7 - gj9), where v5, gj E 

ker(LI), v7, gj7 e ker(LI)'. According to the compatibility condition on A 



1490 PELLE OLSSON 

we then obtain 

(V - 4, (V - k)t)h ?-(Vs-go)TA(D(v" - "))o - 231D(v - h)I- 

Arguing exactly as in the proof of the homogeneous case [2, proof of Proposition 
3. 2] gives 

(D(v" - k"))o =-L1lLo(vo - go), 
where 

I, 

{sj} is a basis in ker LI, whence L1 is invertible. Consequently, 

(v -4, (v - g)t)h ? YIhO-goI2 - 25IID(v- )IIh 

By means of the discrete Sobolev inequality we thus arrive at 

(V -4, (V - 4)t)h ? + 69(h)) Iv - 4Hl. 

Thus, 

IIv(t) - (t)Ih < e(a+?(h))tjIv(O) - k(O)Ilh = 0 

which is equivalent to v(t) = 4(t), t > 0. 
To get the final estimate, we consider the auxiliary problem. One obtains 

d 
1II4I2 < -2goTA(Dk")o - 451IDkII2 + II4II2 + IIFI 12 

Now 
Logo + L1 (D4")o = g 

and so 
(D4")o =-L-'Logo + L1g. 

Thus, 

-2goTA(D4")o = 2goTAL. 'Logo - 2gjTAL-1g < yjgoj2 + Ig12, 

where the algebraic inequality 2xy < ex2 + -ly2 was used. This leads to 

d 11 -112+ Igoj2 < (y + l)Igo12 - 431jD4Ij2 + jj4jj2 + Igj2 + jIF112 

The coefficients of this estimate are exactly the same as those of the correspond- 
ing analytic inequality. Using 4 = v and eliminating the boundary terms of 
the right member by means of the Sobolev inequality yields 

dt II12 + jvoI < (a + 69(h))jIvjj2 + Igj2 + IIF12 

where a is the same constant as in the analytic estimate. Finally, integration 
with respect to time results in 

IIvI12 + j vo(T) I2dT < e(,+&(h))t (I IfI2 + j (|g(r) 12 + |IF(r) I I ) dT) 

which is the desired estimate. a 
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Remark. The boundary conditions are used twice - first in conjunction with 
Proposition 2.1 to show that g = v, and second with the auxiliary problem to 
get the actual estimate. It should be emphasized that the hypotheses preced- 
ing the formulation of Proposition 2.2 are needed in order to prove an energy 
estimate for the analytic problem (2.6). We do not claim that the additional 
assumption in the previous proposition is necessary. 

2.2. Two-dimensional symmetric hyperbolic systems. We consider equation 
(1.12) with the lower-order terms omitted for convenience. The boundary con- 
ditions are given by L(x)u(x, t) = g(x, t), x E F, where the analytic boundary 
operator L(x) is identical to that of ?1.1. The discrete boundary operator is 
defined as 

(LTv)ij = g(xij, t), i =0,v, j =1, ...,v- 1, and 

j= ,v, i =0, ... ,v, 

or, in global form, 
LTV = g. 

Since L has full rank, it follows that there exists a vector g(t) such that LT4 - 

g. Thus, 
LT(v _ g) = 0. 

Equation (1.12) is discretized as 

(2.8) 

(J-lv) = P (2 (DiJ1Biv + J-1BiDiv) + JF) + (I -P) (Jg)tl 

v(O)=f, 

where P is the orthogonal projection corresponding to the global operator LT. 

Proposition 2.3. Suppose that Assumption 2.1 holds. Then (2.8) is strictly stable. 

Proof. By Assumption 2.1, g solves the auxiliary problem 

(J-1g) = G(t, g) + J-'F(t) 

where 

G(t, ) = E (DiJ-lBi + J-1BBiDi) 
i=l 

Hence, according to Proposition 2.1 we have 

(v - g, (v - )t)h = (v - , (DiJ uBi + J1BiDi) (v -))h 

Summation by parts yields 

(v - g, (v - A)t)h = -(v - g, (niA1 + n2A2) (v - k))r 
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But LT(V - 4) = 0, whence v - 4 satisfies the homogeneous boundary condi- 
tions. Consequently (cf. the proof of Proposition 1.1), 

(v - g , (njAj + n2A2) (v -)r -yv-lr < ? 

Thus, g(t) =v(t), t_ O. 
In the second part of the proof we apply the energy method to the auxiliary 

problem. Straightforward computations show that 

d 
dt (k k)h = (4, (niAj + n2A2) g)r + 2(4, F)h. 

Take an arbitrary point xoj on the boundary portion where 01 = 0. We must 
analyze the quadratic form 

gT n(1)Aj + n( )A2)o goj - 

We know that LT =g, where g is the vector representing the analytic bound- 
ary data. Define (Oij = QT(x1j)1j . Hence, 

(2.9) ((OI)I = S(x11)(fiMo)1 + gij 

and the quadratic form is transformed into 

41 (n(')Aj + n(4)A2) go} = (ojAoj(poj 

Using (2.9) gives (omitting the spatial subscripts for simplicity) 

TAq -p IT (A,, + STA S) VI, + 2oTJSTAIg + g 
TAig. 

It is assumed that A,, < -y at xoj . For sufficiently small S we thus get 

f TAV < - Y iVq12 + (1 + jAIj) Igj2. 

Now, lijl < IS11jIIj + Igl. Hence, 

(oTAV + rjj2 < + Yjfj2 + (1 + JAI ) Ig12 < (3 + JAIg2 4 4 4 

for S small enough. It should be underscored that this is exactly the same 
estimate one gets in the continuous case. At each boundary point xoj we have 
thus established that 

4 j (n(1)A + n(1)A2) goj + 2140 1oj12 < (3 + I(Ao)j I) go12 

with a similar expression at points xio corresponding to 42 = 0. Letting 
inf(yij) - y > 0, we thus obtain 

d y 
d4 g)h + (g , 4)r < (3 + /Aloo) (g , g)r + 2(4 , F)h. 
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Finally, with the identification v = g, integration gives the energy estimate 
t 

(V(t), V(t))h + j(V(T), V(T))rdT 

< Ket (f S f)h +j ((g(T), g(T))r + (F(T), F(T))h) dT) 

which proves the theorem. o 

Remark. Because of the terms PT,STAJg + gTAIg, the constant K of the en- 
ergy estimate will in general satisfy K > 1 , even if no estimate of the boundary 
terms (v, v)r is wanted. For g = 0, i. e., homogeneous boundary conditions, 
the critical terms disappear, and one may take K = 1 in case no boundary 
estimate is needed. 
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